

# SYSTEM DATA

LDS<sup>®</sup> LASER<sub>USB</sub><sup>TM</sup> Vibration Control System

Combining convenience, performance, flexiblity and safety, LASER<sub>USB</sub> is the ideal controller for your test lab. It has 24-bit precision with wide control dynamic range, and fast loop times to provide superb control for your most challenging tests.



## Uses and Key Benefits

#### Uses

- Vibration testing in both R&D and production environments with applications that include:
  - Swept sine vibration control
  - Open loop sine oscillator (Structural Dynamics)
  - Resonance track and dwell vibration control
  - Random vibration control
  - Mixed-mode vibration control (SoR, RoR and SRoR)
  - Classical shock control with SRS analysis
  - SRS synthesis control
  - Field data replication (TTH and LTH)
- Simulation of automobile, military vehicle and ground transportation vibration
- Fatigue tests
- Intended to drive a switching power amplifier such as HPAK, SPA-K, D-PAK and XPA-K
- · Synchronised environmental chamber and vibration tests

# Key Benefits

- Supports both 32- and 64-bit Windows<sup>®</sup> operating systems
- Full capability for vibration control and data reduction
- Multi-channels, with 4 to 16 channels for multi-point control
- 24-bit resolution gives wide dynamic range to control highly dynamic structures
- Fast and safe with 10 ms loop time in sine and 100 ms loop time in random as standard
- Amplifier and thermal chamber interfaces for seamless lab integration
- Automatic safety checks to protect your valuable equipment
  USB connectivity for easy installation
- Kurtosis parameter control for non-gaussian random testing
- Fatigue monitor protects test article and shaker
- Reporting to Microsoft Word and Excel<sup>®</sup>

# Inputs

Output Protection

Frequency Range

24-bit 110 dBfs

Voltage Range

**Dynamic Range** 

Resolution

Electronics

Filtering

| Analogue Channels                                                                             | 4 standard, expandable to 16 simultaneous channels. Each can be controlled, monitored or disabled. All are differential inputs with 220 $k\Omega$ impedance                                       |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electronics                                                                                   | Differential amplifier, programmable gain amplifier, anti-<br>aliasing filters, and 24-bit analogue-to-digital converter<br>(ADC)                                                                 |
| Filtering                                                                                     | An analogue filter plus a 160 dB/octave digital filter eliminates non-linear phase distortion and aliasing                                                                                        |
| Frequency Range                                                                               | Up to 42 kHz analysis frequency (96000 samples per second)                                                                                                                                        |
| Voltage Ranges                                                                                | ±10, 1, 0.1 V                                                                                                                                                                                     |
| Input Coupling                                                                                | DC or AC (analogue circuitry)                                                                                                                                                                     |
| Signal<br>Conditioning                                                                        | Voltage or CCLD <sup>*</sup> sensor power (4.7 mA, 23 Vpeak open circuit) and TEDS (transducer electronic datasheet)                                                                              |
| Max. Input                                                                                    | ±36 Vpeak without damage                                                                                                                                                                          |
| Resolution                                                                                    | 24-bit                                                                                                                                                                                            |
| Dynamic Range                                                                                 | 120 dBfs, 110 dB minimum in FFT mode                                                                                                                                                              |
| Accuracy                                                                                      | ±0.08 dB (1 kHz sine at full scale)                                                                                                                                                               |
| Channel Match <sup>†</sup><br>Amplitude                                                       | Within ±0.04 dB                                                                                                                                                                                   |
| Channel Match <sup>†</sup><br>Phase                                                           | Within ±0.1 degree to 2 kHz<br>±0.5 degree to 20 kHz                                                                                                                                              |
| Signal-to-noise                                                                               | $>\!100$ dB (from DC to 1000 Hz measured with half full-scale sine wave)                                                                                                                          |
| Cross-talk                                                                                    | < – 110 dB                                                                                                                                                                                        |
| Total Harmonic<br>Distortion                                                                  | < - 105 dBfs                                                                                                                                                                                      |
| Digital Input and<br>Output                                                                   | 48 parallel lines for 5 V TTL signals. Used for remote start/<br>stop/pause/continue and other functions such as close/<br>open control loop, manual/auto schedule, and enable/<br>disable aborts |
| <ul> <li>CCLD is constant cur<br/>accelerometers with</li> <li>Channel match speci</li> </ul> | rent line drive, the generic name for a constant power supply for<br>built-in electronics<br>fication per 8-channel front end                                                                     |
| Outputs                                                                                       |                                                                                                                                                                                                   |
| Analogue Channels                                                                             | Drive and COLA (constant output level amplitude)/shock trigger outputs standard                                                                                                                   |

Prevents output transient if power is switched off 24-bit digital-to-analogue converter (DAC), anti-imaging filter, programmable gain attenuator, and shutdown

A 160 dB/octave digital filter plus an analogue filter eliminates non-linear phase distortion and imaging

Up to 22 kHz output frequency (48000 samples/sec)

circuitry. Single-ended output with 50  $\Omega$  impedance

±10 Vpeak with adjustable attenuator

| AC Power             | 100 to 240 V, 50/60 Hz, auto-sensing                                                                                                                                                                                                                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power<br>Consumption | 30 W                                                                                                                                                                                                                                                                                                                                    |
| Dimensions           | Height: 8.9 cm (3.5 in)<br>Width: 41.9 cm (16.5 in)<br>Depth: 36.3 cm (14.3 in)                                                                                                                                                                                                                                                         |
| Weight               | 6 kg (13 lb)                                                                                                                                                                                                                                                                                                                            |
| Temperature          | 5 to 55 ° C (41 to 132 ° F)                                                                                                                                                                                                                                                                                                             |
| Humidity             | 10% to 90% RH non-condensing                                                                                                                                                                                                                                                                                                            |
| Front-end DSP Box    | Control loop processing done independent of PC using dual DSP chips. Rear panel connectors for inputs and outputs, connection to PCI card, and 48 digital I/O lines. Front panel power switch, abort button and status LEDs                                                                                                             |
| PC Requirements      | USB 2.0 port<br>Microsoft <sup>®</sup> Windows <sup>®</sup> 7(32- and 64-bit), Windows 8 (64-bit),<br>Windows 10 (64-bit) or Windows 11 (64-bit) operating<br>system<br>Microsoft <sup>®</sup> Word<br>With more than 8 channels: 8 MB graphics card<br>(recommended)                                                                   |
| PC Expansion         | PC upgrades and peripheral additions do not delay or interrupt the control loop processing                                                                                                                                                                                                                                              |
| Software             |                                                                                                                                                                                                                                                                                                                                         |
| Architecture         | Distributed processing removes the PC from the control<br>loop process. True multi-tasking allows the PC to deliver<br>maximum graphics performance and responsiveness.<br>Software provides on-line test status and management via<br>text displays, software toggle buttons and displays of<br>multiple time and/or frequency signals |
| Applications         | Random; Sine-on-Random; Random-on-Random; Sine- and<br>Random-on-Random; Swept Sine; Resonance Search, Track<br>and Dwell; Sine Oscillator; Classical Shock; Shock Response<br>Spectrum Synthesis; Transient Time History Control; Long<br>Time History Control (for road simulation testing)                                           |
| Features             | Online help; consistent management of user-defined<br>engineering units; online graphics, one-click Word-based<br>test reports with active data plots that can be rescaled, add<br>cursors, etc.; project sequencing for automated testing to a<br>mission profile                                                                      |
| Control Loop         |                                                                                                                                                                                                                                                                                                                                         |
| Random Dynamic       | Random: 95 dB<br>Sine: 100 dB                                                                                                                                                                                                                                                                                                           |
| Loop Time            | Random: 100 ms typical<br>Sine: 10 ms typical                                                                                                                                                                                                                                                                                           |
| Regulatory Co        | mpliance                                                                                                                                                                                                                                                                                                                                |
| Compliance           | CE marking                                                                                                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                                                                         |

Hardware

| Compliance | CE marking                                                          |
|------------|---------------------------------------------------------------------|
| Safety     | EN/IEC 60950-1                                                      |
| EMC        | FCC Part 15 (CFR 47) Class A, EN 61326 Class A, CISPR 22<br>Class A |

#### **Control Parameters**

| Frequency Range             | 0 to 10 kHz <sup>*</sup> in seventeen ranges. Closed loop control up to 4000 Hz standard                                                                                                     |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                  | 110, 225, 450, 900, or 1800 lines                                                                                                                                                            |
| $\Delta$ F Resolution       | User-selectable, including 5 Hz and its multiples                                                                                                                                            |
| Dynamic Range               | Up to 95 dB                                                                                                                                                                                  |
| Randomization               | Frequency domain phase randomization technique<br>produces a true gaussian distribution                                                                                                      |
| Loop Time                   | Typically 100 ms                                                                                                                                                                             |
| Variable<br>Resolution      | Provides enhanced low-frequency control with up to 8-to-1<br>improvement in spectral resolution                                                                                              |
| Transfer Function           | Measure during pre-test or, for quickest test start-up, recall a function from disk                                                                                                          |
| DOF                         | 2 to 1000                                                                                                                                                                                    |
| Control Strategy            | Single or multiple input channels combined by minimum, maximum, or weighted average. Drive clipping 2 to 6 sigma                                                                             |
| Kurtosis Control            | An option that provides a better simulation of real-world<br>data and enhances fatigue testing. The system uses<br>continuous feedback control to achieve a user-specified<br>target K value |
| Limiting                    | Any channel can be enabled as a Limit or Abort channel.<br>Each Limit channel has a corresponding amplitude vs<br>frequency profile                                                          |
| Non-acceleration<br>Control | Control using a force, velocity or displacement transducer;<br>or control to angular acceleration                                                                                            |

\* High Frequency Option extends to 10 kHz. Under export control license

#### **Test Schedule**

User-defined sequence of events or 'profiles', that are automatically executed during test.

| Events             | Level and duration, timed pause, save signals, abort enable/<br>disable, digital output trigger, and control loop close/open;<br>logic for sequence and nested loops |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Sequencing | Flow diagram of blocks with each block defining a Profile and Schedule                                                                                               |

#### **Test Execution**

The system performs pre-test checks, equalises the load and then executes the schedule

| Pre-test       | System performs safety checks then gradually increases<br>the drive per the user-specified peak drive voltage (initial<br>and maximum), response level goal, and ramp-up rate (slow<br>or fast)                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Mode | System executes the events specified in the schedule. If a<br>Profile Sequence is defined, profile-schedule blocks in the<br>flow diagram are sequentially executed. The reference is<br>changed in one loop, eliminating the need to stop and<br>restart the test to change the profile |
| Manual Mode    | User can override automatic mode to manage the test                                                                                                                                                                                                                                      |

#### Test Management

Control panel toggle buttons and toolbar icons provide easy access to test controls. Commonly used commands are also accessible via keyboard function keys. Text messages and numerical readouts on the control panel enhance test status monitoring

| Buttons         | Start/stop, pause/continue, enable/disable, abort check, loop close/open, schedule clock on/off                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Icons           | Test level set/increase/decrease, reset average, move to next event/profile, save signals                                                                                                                            |
| Status Displays | Control and demand rms acceleration, demand velocity and displacement, test %/dB/ratio level, peak drive volts, full level and total test time elapsed, time remaining, activity status, and a red alert message box |

#### **Reference Profile**

Entered as a table of breakpoints, recalled stored profile, PSD, or imported ASCII or UFF file. Reference can be rescaled to a new rms value.

| Breakpoints       | Unlimited combination of PSD levels and slopes (dB/<br>octave) at user-defined frequencies                                                                                                              |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abort/alarm       | High and low profile limits defined independently at each<br>breakpoint in dB with respect to reference. RMS high and<br>low limits calculated automatically from profiles or<br>specified by user      |
| Validation Tools  | Profile displayed and updated as it is created. Automatic<br>listing of rms and peak acceleration, velocity and<br>displacement values for profile. Profiles are validated<br>against shaker parameters |
| Engineering Units | English, SI, metric, mixed; linear or angular                                                                                                                                                           |
|                   |                                                                                                                                                                                                         |

#### Fatigue Monitor

The Fatigue Monitor automatically stops the test if the inverse of the system transfer function (Hinverse) or selected transmissibility, or input channel spectrum, exceeds specified abort limits. Hinverse could change because of fatigue in the test article, looseness in the fixture and mounting, or degradation of the shaker value

| Signals     | Hinverse, any transmissibility or input spectrum   |
|-------------|----------------------------------------------------|
| Source      | Active signal or imported from disk file           |
| Tolerances  | User-specified upper/lower aborts and alarms in dB |
| Check Level | From 10% to 100% of the full test level            |

#### Signal Displays

Unlimited number of display windows in tile or cascade format with click & drag zoom, user annotation, and cursors

| Window Format      | Per window choice of single, dual, or four-pane formats.<br>Each pane can display single or multiple signals overlaid in<br>either time or frequency. Independent choice of colour and<br>texture for signals, grids, tick marks, labels, titles, etc. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale Format       | Linear or logarithmic scales for X and Y axes with automatic or manual scaling                                                                                                                                                                         |
| Cursors            | Single or dual with X, Y, $\Delta X$ , $\Delta Y$ , $\Delta RMS$ and Q value readouts; manual peak marks; automatic peak/valley detection and marks; harmonic and sideband cursors                                                                     |
| Frequency Signals  | Control, any input, transfer function (amplitude and phase), coherence, drive, profile, alarms, and aborts                                                                                                                                             |
| Strip Chart Plots  | Scrolling record (data point per frame) of input channel rms, max, min, or mean values                                                                                                                                                                 |
| Oscilloscope Plots | Drive and input time histories                                                                                                                                                                                                                         |

#### On-line Math

This feature allows you to create customised signals. All signals are calculated and displayed 'live' during testing. Operations include addition, subtraction, multiplication, division, and transmissibility between PSDs for any two inputs or an input PSD and the control PSD.

#### Safety Features

| Control Signal     | Automatic detection of input overload, open loop, and loss of control signal                |
|--------------------|---------------------------------------------------------------------------------------------|
| Line-abort Trigger | Ratio of spectral lines allowed to exceed limits to total number of lines; From 0 to 1      |
| Test Shutdown      | Shutdown initiated by operator or software is performed gracefully at a user-specified rate |
| Abort Rate         | 1 to 120 dB/s                                                                               |
| Email Support      | Email message automatically sent on abort                                                   |

#### Post-test Documentation

lcon for single-click generation of data plots and test reports, including setup parameter listings, test logs and formatted signal plots, within Microsoft<sup>®</sup> Word

#### Control Parameters

| Frequency Range             | 0.1 Hz to 12 kHz<br>Up to 4 kHz standard; high-frequency option extends to<br>12 kHz                                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                  | 512, 1024 or 2048 points per sweep                                                                                                                                                            |
| Dynamic Range               | Up to 100 dB                                                                                                                                                                                  |
| Loop Time                   | 10 ms loop time in sine                                                                                                                                                                       |
| Control Accuracy            | 1 dB through peak-notch with a Q of 50 at 1 octave/min., 8 control channels with 25% proportional tracking filters                                                                            |
| Compression Rate            | Adaptive or fixed 0.3 to 3000 dB/s                                                                                                                                                            |
| Control Strategy            | Single, or multiple input channel combined by minimum,<br>maximum or weighted average. Input amplitude estimated<br>with peak, mean, rms or digital tracking filter on a per<br>channel basis |
| Tracking Filter             | Proportional – Bandwidth: 7 to 100% of drive frequency<br>Fixed – Bandwidth: 1 to 500 Hz                                                                                                      |
| Sweep Rate                  | Linear from 0 to 6 kHz/min, or logarithmic from 0 to 100 octave/min                                                                                                                           |
| Limiting                    | Any channel can be enabled as a Limit or Abort channel.<br>Each Limit channel has a corresponding amplitude vs<br>frequency profile                                                           |
| Non-acceleration<br>Control | Control using a force, velocity or displacement transducer;<br>or control to angular acceleration                                                                                             |

#### Test Schedule

User-defined sequence of events or 'profiles', that are automatically executed during test.

| Events             | Sweeps (duration, sweep range and start frequency, sweep<br>direction and sweep rates), dwells (frequency and cycle or<br>time duration), level, timed pause, digital output trigger,<br>enable/disable abort checking, control loop open/close,<br>and save results; logic for sequence loop and nested loops |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Sequencing | Flow diagram of blocks with each block defining a Profile and Schedule                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                                                                                                                                                                |

# Test Execution

The system performs pre-test checks, equalises the load and then executes the schedule

| Automatic Mode | System executes events specified in the schedule. If a Profile Sequence is defined, profile-schedule blocks in the flow diagram are sequentially executed |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manual Mode    | User can override automatic mode to manage the test using manual commands                                                                                 |

#### Test Management

Control panel toggle buttons and toolbar icons provide easy access to test controls. Commonly used commands are also accessible via keyboard function keys. Text messages and numerical readouts on the control panel enhance test status monitoring

| Buttons         | Start/stop, pause/continue, enable/disable, abort check, loop close/open, schedule clock on/off                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Icons           | Test level set/increase/decrease, reset average, move to next event/profile, save signals                                                                                                                            |
| Status Displays | Control and demand rms acceleration, demand velocity and displacement, test %/dB/ratio level, peak drive volts, full level and total test time elapsed, time remaining, activity status, and a red alert message box |

# Reference Profile

Entered as a table of breakpoints for acceleration, velocity and displacement segments

| Breakpoints       | Unlimited combination of amplitudes (A, V or D) right and/<br>or left constant A/V/D slopes at defined frequencies;<br>automatic crossover calculations                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abort/alarm       | High and low profile limits defined independently at each breakpoint in dB with respect to reference                                                                                                                   |
| Validation Tools  | Profile displayed and updated as it is created. Automatic<br>listing of peak acceleration, peak velocity and peak-to-peak<br>displacement values for profile. Profiles are validated<br>against shaker parameter table |
| Engineering Units | English, SI, metric, mixed; linear or rotary                                                                                                                                                                           |
|                   |                                                                                                                                                                                                                        |

# Signal Displays

| Window Format      | Per window choice of single, dual, or four-pane formats.<br>Each pane can display single or multiple signals overlaid in<br>either time or frequency. Independent choice of colour and<br>texture for signals, grids, tick marks, labels, titles, etc. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale Format       | Linear or logarithmic scales for X and Y axes with automatic or manual scaling. Dimension: A, V or D                                                                                                                                                   |
| Cursors            | Single or dual with X, Y, $\Delta X$ , $\Delta Y$ , $\Delta RMS$ and Q value readouts; manual peak marks; automatic peak/valley detection and marks; harmonic and sideband cursors                                                                     |
| Frequency Signals  | Control, any input, transfer function (amplitude and phase), coherence, drive, profile, alarms, and aborts                                                                                                                                             |
| Strip Chart Plots  | Scrolling record of peak value versus time for the control signal or any input signal; frequency versus time                                                                                                                                           |
| Oscilloscope Plots | Input time histories                                                                                                                                                                                                                                   |
| Resonance Search   | Table display of resonance frequencies and Q factors                                                                                                                                                                                                   |
| COLA Features      |                                                                                                                                                                                                                                                        |

# Constant Amplitude Sine output with programmable amplitude from 0.1 to 10 V DC Proportional Varying DC output proportional to frequency; programmable frequency with linear or log interpolation

#### On-line Math

This feature allows you to create customised signals. All signals are calculated and displayed 'live' during testing. Operations include addition, subtraction, multiplication, division, and transmissibility between spectra for any two inputs or an input spectrum and the control spectrum.

#### Safety Features

| Control Signal | Automatic detection of input overload, open loop, and loss of control signal                |
|----------------|---------------------------------------------------------------------------------------------|
| Abort Trigger  | Continuous time allowed abort limits: From 0 – 1 s                                          |
| Test Shutdown  | Shutdown initiated by operator or software is performed gracefully at a user-specified rate |
| Abort Rate     | 1 to 120 dB/s                                                                               |

Email Support Email message automatically sent on abort

#### Post-test Documentation

lcon for single-click generation of data plots and test reports, including setup parameter listings, test logs and formatted signal plots, within  ${\rm Microsoft}^{\textcircled{}}$  Word

Includes AVD, a tripartite graph showing acceleration, velocity and displacement

# **Control Parameters**

| Frequency Range   | 0 to 22 Hz                                                                                                                      |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Frame Size        | 128 to 16384 points or automatically optimised. Linear filter design minimises distortion and preserves the true waveform shape |
| Transfer Function | Measure during pre-test or, for quickest test start-up, recall a function from disk                                             |
| Averaging         | User-specified coefficient from 1 to 500                                                                                        |
| Filtering         | User specifies cut-off frequency for low-pass filtering applied to the reference waveform, drive, and all input channels        |
| Pulse Delay       | User-specified delay between pulses from 0 to 1000 s                                                                            |
|                   |                                                                                                                                 |

Test Schedule

User creates a schedule of events to perform during the test. Looping and nested looping logic speed and simplify programming.

| Events | Level and number of pulses, digital output trigger, abort |
|--------|-----------------------------------------------------------|
|        | enable/disable, and loop open/close, save results, pause, |
|        | invert pulse                                              |

**Test Execution** 

The system performs pre-test checks, equalises the load, and then executes the schedule.

| Pre-test       | System performs safety checks then gradually increases<br>the drive per the user-specified peak drive voltage (initial<br>and maximum), response level goal, and ramp-up rate (slow<br>or fast) |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Mode | System sequentially executes each event in the schedule                                                                                                                                         |
| Manual Mode    | User can override automatic mode to manage the test<br>using manual commands                                                                                                                    |

#### Test Management

Control panel toggle buttons and toolbar icons provide easy access to test controls. Commonly used commands are also accessible via keyboard function keys. Text messages and numerical readouts on the control panel enhance test status monitoringl

| Buttons         | Start/stop, pause/continue, enable/disable, abort check, loop close/open, schedule clock on/off                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Icons           | Test level set/increase/decrease, reset average, move to next event/profile, save signals                                                                                                                                      |
| Status Displays | Control and demand peak acceleration, demand velocity<br>and displacement, test %/dB/ratio level, peak drive volts,<br>full level and total test time elapsed, time remaining, activity<br>status, and a red alert message box |

Reference Waveform

Convenient pulse selection from a waveform library. User-specified duration and peak acceleration.

| Pulse Types       | Half-sine, haversine, initial and terminal peak sawtooth,<br>triangle, rectangle and trapezoid                                                                                                                                                                                                                                                                     |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse Duration    | From 0.5 to 3000 ms                                                                                                                                                                                                                                                                                                                                                |
| Compensation      | Pre-and post-pulse, post-pulse only, or pre-pulse only.<br>Single- or double-sided for minimum acceleration and full<br>use of shaker stroke. Choice of displacement optimum, half-<br>sine, rectangular, rounded rectangular, or triangular<br>compensation pulses. Pre-pulse and post-pulse amplitudes<br>definable in percentage of reference peak acceleration |
| Abort Limits      | Set to MIL – STD 810 guidelines or customised by user in<br>percentage of reference waveform amplitude and<br>percentage of pre-pulse and post-pulse amplitudes                                                                                                                                                                                                    |
| Validation Tools  | Waveform displayed and updated as it is created.<br>Automatic display of profile acceleration, velocity, and<br>displacement waveforms together with shaker limits. Shock<br>profile is validated against shaker parameter table                                                                                                                                   |
| Engineering Units | English, SI, metric, mixed                                                                                                                                                                                                                                                                                                                                         |

#### Signal Displays

Unlimited number of display windows in tile or cascade format with click  $\mbox{\ensuremath{\&}} drag zoom, user annotation, and cursors.$ 

| Window Format     | Per window choice of single, dual, or four-pane formats.<br>Each pane can display single or multiple signals overlaid in<br>either time or frequency. Independent choice of colour and<br>texture for signals, grids, tick marks, labels, titles, etc. |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Scale Format      | Linear or logarithmic scales for X and Y axes with automatic or manual scaling.<br>Dimension: A, V or D                                                                                                                                                |  |
| Cursors           | Single or dual with X, Y, $\Delta X$ , $\Delta Y$ , $\Delta RMS$ and Q value<br>readouts; manual peak marks; automatic peak/valley<br>detection and marks; harmonic and sideband cursors                                                               |  |
| Time Signals      | Control, drive, any input, profile, aborts, composite (control, profile, aborts)                                                                                                                                                                       |  |
| Frequency Signals | Control, any input, transfer function (amplitude and phase), coherence, drive, profile, alarms and aborts                                                                                                                                              |  |
| Strip Chart Plots | Scrolling record (data point per frame) of input channel rms, max, min or mean values                                                                                                                                                                  |  |
| SRS Analysis      | Up to 14 octave range (maxi-max, negative maximum and positive maximum). User specifies high and low frequency, centre frequency, damping ratio or Q value and resolution (1/1, 1/3, 1/6, 1/12, 1/24, or 1/48)                                         |  |
| Safety Features   |                                                                                                                                                                                                                                                        |  |
| Control Signal    | Automatic detection of input overload, open loop and loss of control signal                                                                                                                                                                            |  |

| Control Signal      | Automatic detection of input overload, open loop and loss of control signal                |
|---------------------|--------------------------------------------------------------------------------------------|
| Point-abort Trigger | Allowable ratio of points exceeding abort limits to total number points in a frame: 0 to 1 |
| Test Shutdown       | Shutdown initiated by operator or software is performed gracefully                         |
| Email Support       | Email message automatically sent on abort                                                  |

Post-test Documentation

lcon for single-click generation of data plots and test reports, including setup parameter listings, test logs, and formatted signal plots within  ${\rm Microsoft}^{\textcircled{}}$  Word

#### Test Setup and Management

All of the features of Swept Sine Vibration Control software are included in the RSTD package. Users can follow familiar procedures for quick test setup. In Schedule, the user defines a Search Event by frequency range, sweep rate, and minimum Q and amplitude for resonance detection. Schedule also allows easy definition of a Dwell Event by selecting either a frequency locked dwell or tracked dwell at the resonance sin the Dwell List generated during the Search Event. During the resonance search all of the control buttons, icons and status displays are available as in the Swept Sine package.

#### **Resonance Search**

Resonance search creates a Dwell List from a measured transmissibility function using specified detection criteria

| Transmissibility   | Measurement between any pair of inputs or an input and the control signal                           |
|--------------------|-----------------------------------------------------------------------------------------------------|
| Search Range       | User-selected start and end frequencies within the frequency range defined by the reference profile |
| Sweep Rate         | Default to the sweep rate for the reference profile or user-<br>specified special sweep rate        |
| Detection Criteria | Identification of resonances based on Q and transmissibility amplitude thresholds                   |

#### Resonance Dwell and Tracked Dwell

Automated and interactive test modes reduce test time and allow tailored testing

| Test Modes     | <ol> <li>Choice of three modes:</li> <li>Search and dwell as each resonance is detected during<br/>the sweep</li> </ol>                                                                                                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | <ol> <li>Search then automatically dwell using the generated<br/>Dwell List</li> </ol>                                                                                                                                                      |
|                | 3. Search, pause for user review and editing of Dwell List, then automatically dwell using the edited Dwell List                                                                                                                            |
| Dwell Modes    | Fixed frequency or tracked resonance dwell. Tracked dwell<br>adjusts the drive frequency to track the resonance as its<br>frequency changes during dwelling                                                                                 |
| Dwell Duration | Time or cycles using true cycle counting                                                                                                                                                                                                    |
| Drift Criteria | Programmed end to resonance track on a frequency drift<br>exceeding a specified percentage of the initial resonant<br>frequency, a specified shift in frequency over a specified<br>time interval, or a specified change in amplitude ratio |
|                |                                                                                                                                                                                                                                             |

#### Signal Displays

RSTD offers all of the flexible window displays and plot attribute selections available in the Swept Sine Control package. RSTD also provides a special fourpane window that updates during search and dwell operations:

| Search Log     | Provides a time-stamped list of all activities including<br>search start/end, resonance frequencies found and<br>resonance tracking status                                                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dwell List     | Shows the frequency, amplitude, phase, Q, and elapsed time<br>for each resonance found. Interactive editing via Add and<br>Remove buttons: Add inserts a resonant frequency value,<br>Remove deletes resonances based on screening by list<br>entry number, Q or amplitude |
| Amplitude Plot | Plot of transmissibility magnitude versus frequency                                                                                                                                                                                                                        |
| Phase Plot     | Plot of transmissibility phase angle versus frequency.                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                            |

# Special Displays

Special displays for monitoring resonance dwells include:

| Dwell Histories   | Control acceleration versus time and drive frequency versus time |
|-------------------|------------------------------------------------------------------|
| Frequency Signals | Control acceleration, derived velocity, or derived               |

# Post-test Documentation

Documentation and reports of both setup parameters and signals produced through Microsoft^{®} Word as printed media or saved files on disk

displacement versus frequency

| Run Log        | Time and test frequency (Hz) stamped list of all test<br>operations including test start/end, schedule actions,<br>operator commands, and error or abort conditions |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Search Log     | Time-stamped list of all resonance search and dwell<br>operations including search start/end, resonance<br>frequencies found, and dwell start/end                   |
| Resonance List | Tabulated list of resonance frequencies and corresponding amplitude, phase, Q, dwell status, and dwell duration                                                     |
| Data Plots     | Transmissibility function, control acceleration versus time,<br>drive frequency versus time; saved either automatically or<br>manually                              |
|                |                                                                                                                                                                     |

#### Test Setup and Control

SoR includes all of the features of the Random Vibration Control package with one exception – the High Frequency option.

Setup of a SoR broadband Power Spectral Density (PSD) profile is the same as in the Random package. Up to 20 sine tones are added. Automatic on/off switching (at arbitrary intervals) of each of the sine tones, or even the broadband random, can be set in the schedule

#### Test Management

SoR includes all of the automatic and manual test controls that are included in the Random software package with the addition of a control panel that allows the user to switch on/off individual sine tones or the broadband random

| Automatic Mode | While creating the test schedule, the user arranges events<br>using looping and nested looping logic similar to creating a<br>schedule in Random. In SOR, the control panel can be<br>repeatedly inserted as an event to switch on/off individual<br>sine tones or the broadband random at any time. One<br>typical application of this feature is to delay the start time<br>of the sine tones until after the random has reached full<br>level. This flexible implementation of the schedule allows<br>users to write their own script for the test |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NA 1.54 1      | During to sting a the surger set of a strategy of the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Manual Mode During testing, the user can use the control panel to activate or deactivate any of the components at any time. The software will validate the overall required rms value against shaker limits before implementing any changes

#### Broadband Control Technique

The broadband control process is the same as that used in the Random package. The PSDs for the drive and control channels are calculated on a per frame basis and used to continuously update the control loop transfer function. The broadband random drive signal has a true gaussian distribution

#### Sine Tone Control Technique

Up to 20 tones can be controlled simultaneously. An individual phase-locked tracking filter is applied to each sine tone to accurately extract its amplitude from the control feedback signal. The sine tone portions of the drive signal are generated digitally with updates to amplitude and frequency made on a per point basis or at zero-crossings.

A high precision waveform generator creates pure sine tones with extremely low amplitude distortion. The Total Harmonic Distortion (THD) of each sine tone is less than – 90 dB. Tone frequencies are changed with analogue-like smoothness. The tone sweep characteristics are not linked to the broadband random spectral resolution or the frame acquisition time

### Sine-on-Sine

The broadband random may be totally suppressed allowing multi-sine excitation with up to 20 sine tones simultaneously

Sine Tone Characteristics

| Number              | Up to 20 tones                                                                                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
| Target Amplitude    | Fixed acceleration or amplitude versus frequency profile table                                                     |
| Profile Breakpoints | Unlimited combination of amplitudes (A, V or D) and right and/or left constant A/V/D slopes at defined frequencies |
| High Abort/Alarm    | Limits specified in dB with respect to the target amplitude                                                        |
| Frequency Range     | High, low, and initial frequency in Hz (all with a resolution as fine as .000001 Hz)                               |
| Initial Direction   | Increasing or decreasing from the initial frequency                                                                |
| Sweep Mode          | Linear or logarithmic specified as rate or time                                                                    |
| Sweep Rate          | Linear at 0 to 1000 Hz/min, or logarithmic at 0 to 20 oct./<br>min                                                 |
| Sweep Time          | User-defined in minutes/sweep                                                                                      |
| Ramping Rate        | 0 to 200 dB/s (the amplitude changes between 0 and the target at this rate after the tone is switched on/off)      |
| Burst On and Off    | Independent time on time off with resolution of 0.001 s                                                            |
| Harmonic Mode       | Sets tones no. 2, 3, 4, to be integer multiples of sine tone<br>no. 1's frequency parameters                       |

### **Special Features**

| Validation Tools | Automatic listing of acceleration, velocity and displacement values for the broadband, tones and overall profile. The sum of the rms values of all active components (sine tones and broadband random) is used to calculate the overall expected peak vibration levels. The peak A/V/D levels are automatically validated against the shaker limits prior to starting a test and before implementing any manual mode changes during testing |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMS Limits       | High/low rms alarm/abort limits can be automatically<br>calculated based on profiles or entered by the user                                                                                                                                                                                                                                                                                                                                 |
| Special Displa   | ays                                                                                                                                                                                                                                                                                                                                                                                                                                         |

SoR provides the following special data displays:

| Tone Tracks    | Acceleration versus frequency online displays for all<br>sweeping tones                           |
|----------------|---------------------------------------------------------------------------------------------------|
| Sweep Envelope | Amplitude versus frequency sweep envelope for tones,<br>provides pre-test validation of the setup |

#### Test Setup and Control

RoR includes all of the features of the Random Vibration Control package with one exception – the High Frequency option.

Set up of a RoR broadband Power Spectral Density (PSD) profile is the same as in the Random package. Up to 12 narrowbands are added. Automatic on/off switching (at arbitrary intervals) of each of the narrowbands, or even the broadband random, can be set in the schedule.

#### Test Management

RoR includes all of the automatic and manual test controls that are included in the Random software package, with the addition of a control panel that allows the user to switch on/off individual narrowbands or the broadband random

| Automatic Mode | While creating the test schedule, the user arranges events<br>using looping and nested looping logic similar to creating a<br>schedule in Random. In RoR, the control panel can be<br>repeatedly inserted as an event to switch on/off individual<br>narrowbands or the broadband random at any time. One<br>typical application of this feature is to delay the start time<br>of the narrowbands until after the random has reached full<br>level. This flexible implementation of the schedule allows<br>users to write their own script for the test |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manual Mada    | During testing the user concerts control populate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Manual Mode During testing, the user can use the control panel to activate or deactivate any of the components at any time. The software will validate the overall required rms value against shaker limits before implementing any changes

#### Broadband Control Technique

The broadband control process is the same as that used in the Random package. The PSDs for the drive and control channels are calculated on a per frame basis and used to continuously update the control loop transfer function.

#### Narrowband Control Technique

The reference profile is updated on a per frame basis. The total drive signal, made up of the broadband random plus the random narrowbands, has a true gaussian distribution.

## Narrowband Characteristics

| Number                 | Up to 12 narrowbands                                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Target Amplitude       | Acceleration PSD (for example, G/Hz, or (min/s)/Hz, etc.)                                                          |
| Profile Breakpoints    | Unlimited combination of PSD levels with right and left slopes (dB/octave) at user-defined frequencies             |
| Narrowband Width       | Frequency width specified in Hz                                                                                    |
| High Abort/Alarm       | Limits specified in dB with respect to the target amplitude                                                        |
| Frequency Range        | High, low, and initial frequency in Hz (specified for the centre frequency of the narrowband)                      |
| Initial Direction      | Increasing or decreasing from the initial frequency                                                                |
| Sweep Mode             | Linear or logarithmic specified as rate or time                                                                    |
| Sweep Rate             | Linear at 0 to 500 Hz/min, or logarithmic at 0 to 10 oct./min                                                      |
| Sweep Time             | User-defined in hours:minutes:seconds                                                                              |
| Ramping Rate           | 0 to 60 dB/s (the amplitude changes between 0 and the target at this rate after the narrowband is switched on/off) |
| Harmonic Mode          | Sets narrowbands no. 2, 3, 4, to be integer multiples of narrowband no. 1's frequency parameters                   |
| Profile<br>Composition | Sum of narrowbands and broadbands or maximum<br>between narrowbands and broadband                                  |

#### Special Displays

RoR provides the following special data displays:

Sweep Envelope PSD amplitude versus frequency sweep envelope for narrowbands, provides pre-test validation of the setup

#### Safety Features

Automated and interactive test modes reduce test time and allow tailored testing.

| Validation Tools | Automatic listing of acceleration, velocity and displacement values for the broadband, narrowbands and overall profiles. The sum of the rms values of all active components (sine tones and broadband random) is used to calculate the overall expected peak vibration levels. The peak A/V/D levels are automatically validated against the shaker limits prior to starting a test and before implementing any manual mode changes during testing |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMS Limits       | High/low rms alarm/abort limits can be automatically<br>calculated based on profiles or entered by the user                                                                                                                                                                                                                                                                                                                                        |

# Specifications - Mixed Mode: Sine- and Random-on-Random (SRoR) Vibration Control

This add-on module for the SoR and RoR Vibration Control software packages, allows for the user to create a vibration environment by combining fixed or sweeping sine tones and fixed and sweeping random narrowbands with broadband random vibration.

The ultimate in closed loop control applications, SRoR enables the user to simulate the most demanding environments in their test lab. Similar to SoR and RoR, the user can individually activate and deactivate any component (sine tone, narrowband or broadband) of the environment.

SRoR is very easy to set up and run, and is unique in that it uses the power of 6 MHz DSPs (with floating point math) to execute an advanced phase-locked tracking filter technique simultaneously on each of the independent sine tones. For gunfire simulations, it allows for exceptionally fine control of burst time on/ off. Abrupt changes in level, when switching the sine tones or narrowbands on and off, are managed with a user-defined ramping rate.

#### Test Setup and Control

SRoR includes all of the features of the Random, SoR and RoR Vibration Control packages with one exception – the High Frequency option.

Setup of a SRoR broadband Power Spectral Density (PSD) profile is the same as in the Random package. Up to 20 sine tones and 12 narrowbands are added. Automatic on/off switching (at arbitrary intervals) of each of the sine tones and narrowbands, or even the broadband random, can be set in the schedule. During testing, the system simultaneously controls the sine tones, random narrowbands and broadband random.

Broadband Random Control Technique

Same as for the Random Vibration Control package.

Sine Tone Control Technique

Same as for the SoR Vibration Control package.

Sine Tone Characteristics

Same as for the SoR Vibration Control package.

Narrowband Control Technique Same as for the RoR Vibration Control package.

Narrowband Characteristics

Same as for the RoR Vibration Control package.

Test Management

Same as for the SoR and RoR Vibration Control packages.

Safety Features

Same as for the SoR and RoR Vibration Control packages.

Includes AVD, a tripartite graph showing acceleration, velocity and displacement

#### Test Setup

All of the features of the Classical Shock Control package are included in SRS. Users will recognise the same implementation of Schedule, Test Execution, Test Management and Signal Displays.

Preparing the reference waveform is a three-step process:

- The user specifies a Required Response Spectrum (RRS).
   The software uses independent wavelets to synthesise a waveform matching
- the energy content of the RRS. 3. The software compensates the waveform to ensure zero final 6 matching the
- energy content of the RRS.

#### **Test Execution**

The system performs pre-test checks, equalises the load, and then executes the schedule.

| Pre-test        | System performs safety checks then gradually increases<br>the drive per the user-specified peak drive voltage (initial<br>and maximum), response level goal, and ramp-up rate (slow<br>or fast) |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic Mode  | System sequentially executes each event in the schedule                                                                                                                                         |
| Manual Mode     | User can override automatic mode to manage the test using manual commands                                                                                                                       |
| Signal Displays | During testing, the user can display measured waveforms as acceleration, velocity and/or displacement; standard SRS or A/V/D nomograph SRS                                                      |

#### **Control Technique**

The control loop transfer function is updated after each pulse. Following each pulse, the control SRS abort limits are checked.

| Frame Size         | Automatically optimised (up to 16384 points) for the reference waveform. Linear filters minimise distortion and preserves the true waveform shape                                                                                                     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Rate      | Up to 48000 samples per second                                                                                                                                                                                                                        |
| Transfer Function  | Measure during pre-test or, for quickest test start-up, recall a function from disk                                                                                                                                                                   |
| Averaging          | User-specified coefficient from 1 to 500                                                                                                                                                                                                              |
| Filtering          | User specifies cut-off frequency for low-pass filtering applied to the reference waveform, drive, and all input channels                                                                                                                              |
| SRS Analysis       | Up to 14 octave range using maxi-max, negative maximum,<br>and positive maximum analysis techniques.<br>User specifies high and low frequency, reference frequency,<br>damping ratio or Q value, and resolution (1/1, 1/3, 1/6, 1/<br>12, 1/24, 1/48) |
| Line-abort Trigger | Allowable ratio of lines exceeding abort limits to total number of lines in the RRS: 0 to 1                                                                                                                                                           |
| Pulse Delay        | User-specified delay between pulses from 0 to 1000 s                                                                                                                                                                                                  |

#### Required Response Spectrum (RRS)

The RRS is an acceleration versus frequency spectrum that can be defined with as few as two breakpoints. The user enters a table of breakpoints and high/low abort limits, then selects parameters to divide the RRS into discrete Nth-octave bands centred on the reference frequency.

| Breakpoints           | Unlimited combination of target acceleration amplitude with right and/or left slopes (dB/octave) up to 22 Hz     |
|-----------------------|------------------------------------------------------------------------------------------------------------------|
| Abort Limits          | Specified in dB with respect to the target amplitude                                                             |
| <b>RRS</b> Parameters | Low, high and reference frequency; damping ratio (%) or Q;<br>Nth-octave bands (1/1, 1/3, 1/6, 1/12, 1/24, 1/48) |

#### Waveform Synthesis

The software uses the wavelet parameters and synthesis parameters to automatically generate wavelets for each of the Nth-octave bands. The wavelets are combined (synthesised) to produce an initial estimate of the composite transient waveform. The SRS of that waveform is calculated and overlaid on the RRS. If the initial estimate has converged to the RRS, the user can either accept it and move on to Compensation, or modify the synthesis parameters and/or individual wavelet parameters, then iterate to achieve the desired level of convergence.

| Wavelet Types | Half-cycle sinusoids with sine, exponential (gives damped |
|---------------|-----------------------------------------------------------|
|               | sine), rectangular or Hann window                         |

| /aveform | Pyro-shock, minimum acceleration, or specified time |
|----------|-----------------------------------------------------|
| riterion | duration (ms)                                       |

#### Wavelet Parameters

C

| Listing                        | Per wavelet list of frequency (Hz), RRS value (acceleration), synthesised amplitude (acceleration)      |
|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Definition                     | Number of half-cycles, delay (ms) and wavelet amplitude (acceleration)                                  |
| Analysis Type                  | Maxi-max, positive maximum and negative maximum                                                         |
| Damping                        | Percent of critical damping or Q value                                                                  |
| Resolution<br>Reduction Factor | Allows the user to automatically deactivate every Nth wavelet, N = 2 to $48$                            |
| Error Display                  | Numeric display of rms difference between the RRS and synthesised spectrum                              |
| Compensation                   | High-pass filtering or DC removal to bring the final<br>acceleration, velocity and displacement to zero |

# Includes AVD, a tripartite graph showing acceleration, velocity and displacement

#### Profile Import

Waveforms are imported by specifying the source file format and then using Browse to locate a file and import a profile. Digital resampling adjusts the data's sample interval (time step between data points) to match standard system sampling rates.

| File Formats           | ASCII delimited format (tab, comma or space) using Y values or XY data pairs, ASCII UFF, MTS <sup>®</sup> RPC III and binary format |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Digital<br>Resampling  | From 48000 samples per second down to 20 samples per second in 24 stages                                                            |
| Frame Size             | 256, 512, 1024, 2048, 4096, 8192 or 16384 samples                                                                                   |
| Pre-stored<br>Profiles | Bellcore Z1 and Z2, Bellcore Z3, Bellcore Z4, sine, chirp, burst sine and other waveforms                                           |

### Profile Editing and Compensation

Select and apply editing techniques to modify the profile while viewing the acceleration, velocity and displacement waveforms. Multiple compensation techniques ensure initial and final conditions of zero acceleration, velocity and displacement.

| Rescale          | Adjust the reference waveform's magnitude or polarity by applying a scale factor to each data point |
|------------------|-----------------------------------------------------------------------------------------------------|
| Fill-in          | Select a range of data points and specify a new Y value for all of those data points                |
| Taper End Points | Applies a Hann window over a specified percentage of the leading and trailing parts of the waveform |
| Compensation     | Pre- and post-pulses, brick wall high-pass filter, high-pass filter. DC removal. or disabled        |

## Transfer Function Equalisation

TTH provides flexible and accurate control loop transfer function equalisation, with six methods offered:

| Quick Start<br>Method | Browse through disk files, recall a stored transfer function and skip the pre-test                                                                                                                         |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Closed Loop<br>Method | The system outputs a drive waveform and measures the transfer function. A new drive waveform is computed and the process repeated until the control response matches the profile at a specified goal level |
| Open Loop<br>Methods  | <ol> <li>Profile(t): Uses the profile waveform as the drive output</li> <li>Random White Noise: System creates the drive</li> </ol>                                                                        |

waveform from a flat broadband random profile 3. Shaped Random Noise: System uses the spectrum

shape of Profile(t) to create a shaped random output The system outputs a drive waveform and measures the transfer function. This process is repeated several times with the exact same drive waveform output every time. The peak drive voltage and the number of outputs are userspecified

# **Control Technique**

Control process is identical to the Classical Shock Transient Control software. The spectra for the drive and control channels are calculated per data frame and used to adjust the control loop transfer function

#### Test Management

TTH includes all of the automatic and manual test controls that are included in the Classical Shock package. Any or all of the input channels are available to display as acceleration, velocity or displacement waveforms during testing or for post-test analysis. During testing, a special stip chart scrolling display is standard on all time domain input signals. This display gives fast visual validation even for very low frequency tests

#### **Over-test Protection**

Waveforms are imported by specifying the source file format and then using Browse to locate a file and import a profile. Digital resampling adjusts the data's sample interval (time step between data points) to match standard system sampling rates.

| Validation Tools             | Waveform displayed and updated as it is created, imported<br>or edited.<br>Automatic display of profile acceleration, velocity and<br>displacement waveforms together with shaker limits. Profile<br>demands are validated against the shaker parameters                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic or<br>Manual Abort | High and low abort limits can be entered directly by the<br>user. Continuous point-abort checking is performed during<br>testing. This allows aborts during a test rather than only at<br>the end of an entire data frame (critical for long duration<br>low-frequency events) |

#### **Profile Import**

Waveforms are imported by specifying the source file format and then using Browse to locate a file and import a profile. Digital resampling adjusts the data's sample interval (time step between data points) to match standard system sampling rates. It is possible to import Wave Form Editor projects (included in the VSC package)

| File Formats          | ASCII delimited format (tab, comma or space) using Y values or XY values, ASCII UFF, MTS <sup>®</sup> RPC III and binary format |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Digital<br>Resampling | From 20 to 12000 samples per second in 20 stages                                                                                |
| Pro-stored            | Band-limited random white noise, sine and chirp                                                                                 |

Pre-stored Band-limited random, white noise, sine and chirp Profiles

#### Profile Editing

Select and apply editing techniques to modify the profile while viewing the acceleration, velocity and displacement waveforms.

| Replace, insert or append a waveform. A splice utility<br>ensures waveform continuity between adjoining waveform<br>segments |
|------------------------------------------------------------------------------------------------------------------------------|
| Adjust the reference waveform's magnitude or polarity by applying a scale factor to each data point                          |
| Acceleration DC removal, velocity, DC removal, high-pass filter, low-pass filter, decimation, none                           |
| Random profile with spectrum shaped specified by<br>breakpoint table or imported PSD; user-specified kurtosis<br>and skew    |
|                                                                                                                              |

#### Profile

| Single Profile    | One profile with associated test schedule                                            |
|-------------------|--------------------------------------------------------------------------------------|
| Multiple Profiles | Unlimited profiles each with independently specified number of repetitions and level |

# Initial Equalisation

| Quick Start<br>Method   | Browse through disk files, recall a stored transfer function and skip the pre-test                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shaped Random<br>Method | A random noise drive signal, based on a defined PSD profile,<br>is output and the transfer function measured using a closed<br>loop method. The PSD profile is entered as an unlimited<br>combination of PSD levels with right and/or left slope (dB/<br>octave) at user-defined frequencies. Or, the PSD of the<br>actual waveform may be used. The PSD profile may also be<br>defined by a measured PSD, or imported ASCII or UFF file.<br>The user can, in addition, rescale the PSD profile to a new<br>rms value |

# Signal Displays

Unlimited number of display windows in tile or cascade format with click  $\mbox{\ensuremath{\&}} drag zoom, user annotation, and cursors.$ 

| Window Format        | Per window choice of single, dual, or four-pane formats.<br>Each pane can display single or multiple signals overlaid.<br>Independent choice of colour and texture for signals, grids,<br>tick marks, labels, titles, etc. |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scale Format         | Linear or logarithmic scales for X and Y axes with automatic<br>or manual scaling.<br>Dimension: A, V or D                                                                                                                 |
| Cursors              | Single or dual with X, Y, $\Delta X$ , $\Delta Y$ , $\Delta RMS$ and Q value readouts;<br>manual peak marks; automatic peak/valley detection and<br>marks; harmonic and sideband cursors                                   |
| Time Signals         | Control, profile, any input, aborts, composite (control, profile, aborts) and drive; scrolling input histories                                                                                                             |
| Frequency<br>Signals | Control, profile and drive                                                                                                                                                                                                 |

# Test Schedule

Pre-programmed schedule of test events including test level, number of output repetitions and save results

## **On-line Control**

The transfer function is continuously updated during the test at a user-specified rate. This technique adjusts for non-linear effects and changing load dynamics to deliver high accuracy without the need for multiple pre-test iterations

#### **Drive Generation**

After the initial transfer function has been determined, a test can be started immediately. The drive signal is output with constant adjustments as the test progresses. A unique overlapped convolution algorithm ensures a continuous drive signal with smooth transitions between output frames

#### **Over-test Protection**

| Validation Tools             | Waveform displayed and validated against the shaker<br>parameters                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatic or<br>Manual Abort | Continuous point-abort checking is performed during testing.<br>This allows aborts during a test rather than only at the end<br>of an entire output data frame |

## Post-test Documentation

Icon for single-click generation of data plots and test reports, including setup parameter listings, test logs, and formatted signal plots, within  ${\rm Microsoft}^{\textcircled{}}$  Word

# Specifications - Value Random, Swept Sine and Classical Shock Software

Value Vibration Control software provide an economical way to configure a LASER<sub>USB</sub> Vibration Controller for random, sine and classical shock testing. Easy-to-use software, together with extensive automation features such as on-line transmissibility functions, also make the Value applications suitable for research and product development testing.

As your test needs grow, you can conveniently enhance the capabilities of your vibration controller by upgrading from Value packages to Premier packages. The upgrade is simple and no additional hardware is required to make the change. Plus, all of your existing Value test project files are fully compatible with the upgraded Premier packages.

#### Value Random Vibration Control

| Reference Profile | Breakpoint table with unlimited combination of PSD levels<br>with right and/or left slope (dB/octave) at user-defined<br>frequencies |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Range   | 0 to 2.4 kHz in eight ranges; 4 kHz optional                                                                                         |
| Resolution        | 110, 225 or 450 spectral lines; 800 lines optional                                                                                   |
| Dynamic Range     | Up to 95 dB                                                                                                                          |
| Randomization     | Frequency domain phase randomization technique produces a true gaussian distribution                                                 |
| Loop Time         | Typically 100 ms                                                                                                                     |
| Transfer Function | Measure during pre-test or for quickest test start-up, recall a function from disk                                                   |
| DOF               | 2 to 1000                                                                                                                            |
| Control Accuracy  | 1 dB at 99% confidence with 200 DOF                                                                                                  |
| Number of Inputs  | 4 to 8                                                                                                                               |
| Control Strategy  | Control to any single input channel; multiple channel option                                                                         |
| Drive Clipping    | 3 to 6 sigma or disabled                                                                                                             |

## Value Swept Sine Vibration Control

| Reference Profile       | Unlimited combination of amplitudes (A, V or D) and right/<br>left constant A/V/D slopes at defined frequencies                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Range         | 0.1 Hz to 2.4 kHz; optional 4 and 12 kHz ranges                                                                                                             |
| Dynamic Range           | Up to 100 dB                                                                                                                                                |
| Loop Time               | Typically 10 ms                                                                                                                                             |
| <b>Control Accuracy</b> | 1 dB through a peak-notch with a Q of 50, at 1 octave/min                                                                                                   |
| Compression<br>Rate     | Adaptive or fixed 0.3 to 3000 dB/s                                                                                                                          |
| Number of Inputs        | 4 to 8                                                                                                                                                      |
| Control Strategy        | Control to any single input channel; multiple channel option.<br>Peak, mean or rms input channel amplitude processing.<br>Digital tracking filters optional |
| Sweep Rate              | Linear from 0 to 6 kHz/min or logarithmic from 0 to 100 oct./min                                                                                            |
| Drive Resolution        | As fine as 0.000001 Hz                                                                                                                                      |
| Sine Dwell              | User-specified dwell frequency with duration specified in cycles or time                                                                                    |

### Value Classical Shock Transient Control

| Pulse Types       | Half-sine, Haversine, initial and terminal peak sawtooth, triangle, rectangle and trapezoid                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Compensation      | Pre- and post-pulse, post-pulse only, or pre-pulse only.<br>Single- or double-sided for minimum acceleration and full<br>use of shaker stroke |
| Frequency Range   | 0 to 22 kHz                                                                                                                                   |
| Frame Size        | 128 to 16384 points or automatically optimised. Linear filter design minimises distortion and preserves the true waveform shape               |
| Number of Inputs  | 4 to 8                                                                                                                                        |
| Transfer Function | Measure during pre-test or for quickest test start-up, recall a function from disk                                                            |
| Averaging         | User-specified coefficient from 1 to 500                                                                                                      |
| Filtering         | User-specified cut-off frequency for low-pass filtering applied to the reference waveform, drive and all input channels                       |
| Pulse Delay       | User-specified from 0 s to unlimited                                                                                                          |

# **General Features**

| SETUP FE                         | ATURES       |              |  |
|----------------------------------|--------------|--------------|--|
|                                  | VALUE        | PREMIER      |  |
| Validation Tools:                |              |              |  |
| Listing of dynamic limits        | $\checkmark$ | $\checkmark$ |  |
| Overlay of shaker limits         | $\checkmark$ | $\checkmark$ |  |
| Shaker limit checks              | $\checkmark$ | $\checkmark$ |  |
| Engineering Units                | $\checkmark$ | $\checkmark$ |  |
| TEST EXE                         | CUTION       |              |  |
|                                  | VALUE        | PREMIER      |  |
| Test Schedule                    | $\checkmark$ | $\checkmark$ |  |
| Pre-test Modes:                  |              |              |  |
| Automatic test start-up          | $\checkmark$ | $\checkmark$ |  |
| Hold for operator prompt         | $\checkmark$ | $\checkmark$ |  |
| Operation Modes:                 |              |              |  |
| Automatic                        | $\checkmark$ | $\checkmark$ |  |
| Manual                           | $\checkmark$ | $\checkmark$ |  |
| SAFETY FE                        | ATURES       |              |  |
|                                  | VALUE        | PREMIER      |  |
| Control Signal Loss Checks       | $\checkmark$ | $\checkmark$ |  |
| Automatic Line-abort Trigger     | $\checkmark$ | $\checkmark$ |  |
| Test Shutdown:                   |              |              |  |
| Automatic graceful shutdown      | $\checkmark$ | $\checkmark$ |  |
| Manual abort                     | $\checkmark$ | $\checkmark$ |  |
| POST-TEST DOCUMENTATION FEATURES |              |              |  |
|                                  | VALUE        | PREMIER      |  |
| Quick Reports in Word            | $\checkmark$ | $\checkmark$ |  |

# Random Vibration Control

|                                      | VALUE            | PREMIER       |
|--------------------------------------|------------------|---------------|
| Maximum Frequency Range (kHz)        | 2.4;<br>4 opt.   | 4;<br>10 opt. |
| Maximum Frequency Resolution (lines) | 450;<br>800 opt. | 1800          |
| Loop Time                            | 100 ms           | 100 ms        |
| Maximum Input Channels               | 8                | 16            |
| Control Strategies:                  |                  |               |
| Single channel control               | $\checkmark$     | $\checkmark$  |
| Multiple channel control             | option           | $\checkmark$  |
| Non-acceleration control             | -                | $\checkmark$  |
| Loop Transfer Function:              |                  |               |
| Pre-test equalization                | $\checkmark$     | $\checkmark$  |
| Stored disk file                     | $\checkmark$     | $\checkmark$  |
| Import Profile                       | option           | $\checkmark$  |
| Signal Displays:                     |                  |               |
| One-, two- and four-pane             | $\checkmark$     | $\checkmark$  |
| Math operations and displays         | -                | $\checkmark$  |
| Scrolling strip chart plots          | -                | $\checkmark$  |
| Oscilloscope plots                   | -                | $\checkmark$  |
| Application Expansion:               |                  |               |
| Sine-on-Random                       | -                | $\checkmark$  |
| Random-on-Random                     | -                | $\checkmark$  |
| Sine- and Random-on-Random           | -                | $\checkmark$  |
| Automatic drive notching/limiting    | _                | $\checkmark$  |

# Swept Sine Vibration Control

|                                   | VALUE              | PREMIER       |
|-----------------------------------|--------------------|---------------|
| Maximum Frequency Range (kHz)     | 2.4;<br>4, 12 opt. | 4;<br>12 opt. |
| Loop Time                         | 10 ms              | 10 ms         |
| Compression Rate:                 |                    |               |
| Fixed (dB/sec)                    | 0.3 - 3000         | 0.3 - 3000    |
| Adaptive                          | $\checkmark$       | $\checkmark$  |
| Maximum Input Channels            | 8                  | 16            |
| Control Strategies:               |                    |               |
| Single channel control            | $\checkmark$       | $\checkmark$  |
| Multiple channel control          | option             | $\checkmark$  |
| Digital tracking filters          | option             | $\checkmark$  |
| Peak, rms and mean                | $\checkmark$       | $\checkmark$  |
| Non-acceleration control          | -                  | $\checkmark$  |
| Sweep Type and Rate:              |                    |               |
| Linear (Hz/min)                   | 6000               | 6000          |
| Logarithmic (octaves/min)         | 100                | 100           |
| Reference Profile Breakpoints     | Unlimited          | Unlimited     |
| Signal Displays:                  |                    |               |
| One-, two- and four-pane          | $\checkmark$       | $\checkmark$  |
| Math operations and displays      | -                  | $\checkmark$  |
| Application Expansion:            |                    |               |
| Resonance Search, Track and Dwell | -                  | $\checkmark$  |
| Automatic drive notching/limiting | -                  | $\checkmark$  |

# **Classical Shock**

|                                | VALUE        | PREMIER      |
|--------------------------------|--------------|--------------|
| Maximum Frequency Range (kHz)  | 22           | 22           |
| Maximum Frame Size             | 16384        | 16384        |
| Loop Transfer Function:        |              |              |
| Pre-test equalization          | $\checkmark$ | $\checkmark$ |
| Stored disk file               | $\checkmark$ | $\checkmark$ |
| Maximum Input Channels         | 8            | 16           |
| Low-pass Filtering             | $\checkmark$ | $\checkmark$ |
| Classical Pulse Types:         |              |              |
| Half-sine                      | $\checkmark$ | $\checkmark$ |
| Haversine                      | $\checkmark$ | $\checkmark$ |
| Sawtooth                       | $\checkmark$ | $\checkmark$ |
| Rectangle                      | $\checkmark$ | $\checkmark$ |
| Triangle                       | $\checkmark$ | $\checkmark$ |
| Trapezoid                      | $\checkmark$ | $\checkmark$ |
| SRS Analysis                   | -            | $\checkmark$ |
| Control Strategies:            |              |              |
| Single channel control         | $\checkmark$ | $\checkmark$ |
| Multiple channel control       | -            | $\checkmark$ |
| Non-acceleration control       | -            | $\checkmark$ |
| Signal Displays:               |              |              |
| One-, two- and four-pane       | $\checkmark$ | $\checkmark$ |
| Scrolling strip chart plots    | -            | $\checkmark$ |
| Application Expansion:         |              |              |
| SRS Synthesis and Control      | _            | $\checkmark$ |
| Transient Time History Control | -            | $\checkmark$ |

#### Hardware

#### LAS-200

- including:
- Four inputs
- One output
- COLA
- · Digital I/O for remote control

#### Software Bundles

#### SCO-101

#### including:

- Premier Random Vibration Control
- Premier Swept Sine Vibration Control

Premier Bundle 1

Premier Resonance Search, Track and Dwell Vibration Control · Premier Classical Shock Control

LASER<sub>USB</sub> Shaker Control System

- Sine Oscillator
- Analyse Anywhere for Shaker Control

#### SCO-102 Premier Bundle 2

#### including:

- Premier Random Vibration Control
- · Premier Sine-on-Random Vibration Control
- Premier Swept Sine Vibration Control
- Premier Resonance Search, Track and Dwell Vibration Control
- Premier Classical Shock Control Premier Shock Response Spectrum Transient Control
- Sine Oscillator
- · Analyse Anywhere for Shaker Control
- SCO-103

## Premier Bundle 3

- including:
- Premier Random Vibration Control Premier Sine-on-Random Vibration Control
- Premier Random-on-Random Vibration Control
- Premier Swept Sine Vibration Control
- Premier Resonance Search, Track and Dwell Vibration Control
- Premier Classical Shock Control
- Premier Shock Response Spectrum Transient Control
- Sine Oscillator
- Analyse Anywhere for Shaker Control

#### SCO-104 Premier Bundle 4

including:

- Premier Random Vibration Control
- Premier Sine-on-Random Vibration Control
- · Premier Random-on-Random Vibration Control
- Premier Sine- and Random-on-Random Vibration Control
- Premier Swept Sine Vibration Control
- · Premier Resonance Search, Track and Dwell Vibration Control
- Premier Classical Shock Control
- · Premier Transient Time History Control Premier Shock Response Spectrum Transient Control
- Multi-layer Password Security System
- Sine Oscillator
- · Analyse Anywhere for Shaker Control

#### SCO-107 Value Bundle

- including:
- Value Random Vibration Control
- Value Sine
- Value Classical Shock Control

#### Software Packages

#### PREMIER SOFTWARE

| SCO-01P        | Premier Random Vibration Control     |  |  |  |
|----------------|--------------------------------------|--|--|--|
| SCO-02P        | Premier Swept Sine Vibration Control |  |  |  |
| SCO-03P        | Premier Classical Shock Control      |  |  |  |
| VALUE SOFTWARE |                                      |  |  |  |

| SCO-01V | Value Random Vibration Control     |
|---------|------------------------------------|
| SCO-02V | Value Swept Sine Vibration Control |
| SCO-03V | Value Classical Shock Control      |

#### Optional Hardware and Software

#### **OPTIONAL HARDWARE**

| LAS-201<br>LAS-203<br>LAS-204<br>LAS-210 | Single-channel Analogue Input (with voltage, CCLD sensor<br>power and TEDS input coupling)<br>Remote Abort Button<br>Rack Mounting Kit<br>Channel Expansion Box |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| OPTIONAL PREMIER SOFTWARE                |                                                                                                                                                                 |  |  |
| SCO-01P-01                               | Sine-on-Random Vibration Control                                                                                                                                |  |  |
| SCO-01P-02                               | Random-on-Random Vibration Control                                                                                                                              |  |  |
| SCO-01P-03                               | Sine- and Random-on-Random Vibration Control                                                                                                                    |  |  |
| SCO-01P4                                 | Kurtosis Parameter Control                                                                                                                                      |  |  |
| SCO-02P-01                               | Resonance Search, Track and Dwell Vibration Control                                                                                                             |  |  |
| SCO-03P-01                               | Transient Time History Control                                                                                                                                  |  |  |
| SCO-03P-02                               | Shock Response Spectrum Synthesis Control                                                                                                                       |  |  |
| SCO-04P                                  | Long Time History Data Replication Control                                                                                                                      |  |  |
| SCO-05P                                  | Sine Oscillator                                                                                                                                                 |  |  |
| OPTIONAL VALUE SOFTWARE                  |                                                                                                                                                                 |  |  |

| SCO-01V-02 | Resolution Extension for Value Random                         |
|------------|---------------------------------------------------------------|
| SCO-01V-03 | Frequency Range Extension for Value Random                    |
| SCO-01V-04 | Import of PSD as Reference for Value Random                   |
| SCO-02V-03 | Frequency Range Extension for Value Swept-sine                |
| SCO-01U    | Upgrade from Value Random to Premier Random                   |
| SCO-02U    | Upgrade from Value Swept Sine to Premier Swept Sine           |
| SCO-03U    | Upgrade from Value Classical Shock to Premier Classical Shock |

#### **OPTIONAL GENERAL SOFTWARE**

| SCO-100-02               | Multi-layer Password Security System      |  |
|--------------------------|-------------------------------------------|--|
| SCO-110                  | Analyse Anywhere for Shaker Control       |  |
| SCO-111                  | Waveform Editor                           |  |
| SCO-113                  | Thermal Chamber Communication and Control |  |
| SCO-114                  | Amplifier Control Interface               |  |
| NETWORK ENABLED SOFTWARE |                                           |  |

#### NET-103-01 NET-Integrator<sup>™</sup> ActiveX Command and Communication

|            | Interface                                  |
|------------|--------------------------------------------|
| NET-104-01 | NET-Integrator Run-time License (per seat) |
|            |                                            |

| UF | ۱LI | в | K/ | <b>A</b> I | IU | N |
|----|-----|---|----|------------|----|---|
|    |     |   |    |            |    |   |

| VTS-CTRL-CAI | VTS Controller, Initial Accredited Calibration (main and |
|--------------|----------------------------------------------------------|
|              | expansion box)                                           |
| VTS-CTRL-CAF | VTS Controller, Accredited Calibration                   |
| VTS-CTRL-CFF | VTS Controller, Factory Standard Calibration             |
| VTS-CTRL-CTF | VTS Controller, Traceable Calibration                    |
| VTS-CTRL-SCF | VTS Controller, On-site Service Calibration              |
|              |                                                          |

BU 3079 - 15

HBK HOTTINGER BRÜEL & KJÆR

Local representatives and service organizations worldwide Although reasonable care has been taken to ensure the

hbkworld.com · info@hbkworld.com

Authough reasonable care has been taken to ensure the information in this document is accurate, nothing herein can be construed to imply representation or warranty as to its accuracy, currency or completeness, nor is it intended to form the basis of any contract. Content is subject to change without notice – contact HBK for the latest version of this document.

